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Abstract—Automatic segmentation in Breast Ultrasound (BUS)
imaging is vital to BUS computer-aided diagnostic systems. Fully
supervised learning approaches can attain high accuracy, yet they
depend on pixel-level annotations that are challenging to obtain.
As an alternative, weakly supervised learning methods offer a
way to lessen the dependency on extensive annotation require-
ments. Existing weakly supervised learning methods are typically
trained on the entire dataset, but not all samples are effective in
training a robust image segmentation model. To overcome this
challenge, we have developed a new weakly supervised learning
approach for BUS image segmentation. Our framework includes
three key contributions: 1) A novel image selection method
using Class Activation Maps is proposed to identify high-quality
candidates for generating pseudo-segmentation labels; 2) The
‘Segment Anything’ is utilized for pseudo-label generation; 3)
A segmentation model is trained using a Mean Teacher method,
incorporating both pseudo-labeled and non-labeled images. The
proposed framework is evaluated on a public BUS image dataset
and achieves an Intersection over Union score that is 82.9% of
what is attained by fully supervised methods.

Index Terms—breast ultrasound imaging, weakly supervised
learning, semi-supervised learning, class activation map.

I. INTRODUCTION

Breast cancer is the most commonly diagnosed cancer
among U.S. women (excluding nonmelanoma skin cancers)
and the second leading cause of cancer death among women
overall [1]. Breast ultrasound (BUS) imaging is a commonly
used tool for early breast cancer diagnosis because it is
affordable, radiation-free, non-invasive, fast-imaging, and has
high sensitivity and accuracy [2]. Accurate segmentation of
tumors from BUS images is essential for radiotherapy planning
and clinical diagnosis. Traditional tumor segmentation from
BUS images has been a manual process, requiring highly expe-
rienced medical professionals. This method is time-consuming
and labor-intensive. Recently, significant advancements in
deep learning for image segmentation [3], [4], along with the
achievements of U-Net [5] in medical image segmentation,
have led to the development of deep learning-based methods.
These include the HCNet (a convolutional neural network and
transformer-based method) [6], CMU-Net (a variant of U-Net)
[7], and RMTL-Net (a MultiTask BUS image segmentation
and classification network) [8].

Fully supervised BUS image segmentation methods require
pixel-level annotations, which are hard to acquire because of
the need for professional radiologists and doctors. To reduce
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labeling costs, researchers have proposed weakly supervised
image segmentation methods. Typical forms of weak super-
vision for segmentation tasks include the use of bounding
boxes [9], scribbles [10], points [11], multi-instance learning
[12] and image-level labels [13]. Among these, image-level
labels are the simplest to acquire and thus have become
widely adopted in the field. In image-level weakly supervised
image segmentation, classification networks are employed to
generate Class Activation Maps (CAMs) [14] as interme-
diaries, subsequently thresholded into pseudo-segmentation
labels. These labels are then used to train a segmentation
network in a fully supervised manner. However, CAMs from
classification networks typically highlight only the most dis-
criminative regions, often covering just a portion of the object.
To address this, several studies [15], [16] focus on methods
to broaden CAM coverage to the entire object. Others [13],
[17] concentrate on improving pseudo-label derivation from
CAMs for more effective segmentation. Weakly supervised
image segmentation is also proposed in BUS images. In [18],
a weakly supervised method for segmenting BUS images
is introduced. CAMs approximate the breast tumor’s initial
location, and a level-set algorithm [19] is utilized to produce
the final segmentation result. In [20], a two-step method for
segmenting BUS images is proposed. The initial step involves
a semi-supervised approach for segmenting breast anatomy.
The second step combines CAMs and a level-set method to
segment breast tumors.

Although refining CAMs can improve the quality of pseudo-
segmentation labels and thereby enhance the training of the
final segmentation model, and while weakly supervised image
segmentation has been previously studied in the context of
BUS images, we observed that pseudo-segmentation labels
generated from CAMs in BUS images are not consistently
reliable. We categorize the images into three distinct groups
based on their CAMs, as illustrated in Fig. 1.

e CAMs encompassing the entire tumor (Figs. 1(a) and
(b)): The CAMs encompass the entire tumor, provid-
ing a distinct boundary that separates the tumor from
the surrounding tissues. This clear delineation achieved
by the CAMs is advantageous for generating pseudo-
segmentation labels of high quality, as seen in the fourth
row in Figs. 1(a) and (b).

e CAMs highlighting the tumor boundary (Figs. 1(c)
and (d)): The CAMs mainly focus on the tumor
boundaries. By meticulously setting the threshold, these
boundary-emphasizing CAMs prove to be valuable in



Fig. 1. Three distinct categories of images, their corresponding CAMs, real segmentation labels, and pseudo-segmentation labels: The first row displays the
CAMs produced by the Activation Modulation and Recalibration (AMR) model [16]. The second row shows bounding boxes created using two thresholds:
red boxes result from a higher threshold, while blue boxes derive from a lower threshold. The third row illustrates the real segmentation labels. Finally, the
fourth row depicts pseudo-segmentation labels generated by the ‘Segment Anything’ model.

creating effective pseudo-segmentation labels, as seen in
the fourth row in Figs. 1(c) and (d).

e CAMs not accentuating significant tumor areas
(Figs.1(e) and (f)): The CAMs do not emphasize regions
critical to the tumor, resulting in an inability to produce
influential pseudo-segmentation labels, as seen in the
fourth row of Figs. 1(e) and (f).

Our observations above show that despite using the most
advanced techniques to improve CAMs, certain images are
ineffective in generating reliable pseudo-segmentation labels
in BUS images. Utilizing the entire training set for generating
pseudo-segmentation labels can lead to suboptimal results in
the trained segmentation model, particularly with images sim-
ilar to Figs. 1(e) and (f). To address this challenge, we propose
an automated approach to identify high-quality candidates for
pseudo-label generation, aiming to enhance the performance
of weakly supervised image segmentation in BUS images. The
proposed method consists of four steps. First, we utilize image-
level labels (tumor/normal) to train an Activation Modulation
and Recalibration (AMR) model [16], which generates CAMs.
Second, we propose a novel threshold-based technique to
select candidate images likely to yield high-quality pseudo
labels. Third, we use the ‘Segmentation Anything’ model
[21] to create pseudo-segmentation labels for the selected
images. Fourth, our dataset will consist of a mix of images:
some with pseudo-segmentation labels and others without. To

effectively train the segmentation model using both pseudo-
labeled and unlabeled images, we adopt the Mean Teacher
method [22]. This strategy enhances the learning process
through the use of high-quality pseudo-segmentation labels
and unlabeled images. Our contributions are summarized as
follows:

e We propose an innovative method for weakly supervised
breast tumor segmentation in BUS images, employing
solely image-level labels.

e Instead of utilizing the entire dataset for pseudo-
segmentation label generation, we propose a novel im-
age selection approach that efficiently selects the most
suitable candidates for creating optimal pseudo labels
and leverages the Mean Teacher method to train a more
effective segmentation model.

e Extensive experiments demonstrate that the proposed
technique surpasses state-of-the-art weakly supervised
image segmentation methods on a public BUS image
dataset [23].

II. METHOD

The proposed methodology includes the following steps: 1)
The complete dataset is randomly divided into a training set
(V) and a test set (K) at ratios of 80% and 20%, respectively;
2) A classification model is trained on the training dataset (/V),
with benign and malignant classified as class 1 and normal as
class 0. CAMs are generated for all images in N; 3) Images
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Fig. 2. An overview of the proposed method is as follows. Step 1: Train a classification model and produce CAMs. Step 2: Identify high-quality samples for
the generation of pseudo-segmentation labels using the proposed image selection method. Step 3: Create pseudo-segmentation labels for the selected samples
using the ‘Segment Anything’ technique. Step 4: Utilize the Mean Teacher model within a semi-supervised learning framework to train a segmentation model,

leveraging both pseudo-labeled and unlabeled samples.

classified as normal are removed from both N and K to form
the training and test datasets for segmentation, denoted as
V and X, respectively. We only focus exclusively on those
images that contain tumors; 4) The proposed image selection
method is applied to identify candidate images from V' that
are most likely to produce high-quality pseudo-segmentation
labels. These selected images are placed in subset L, with the
rest going into subset U, where V = L + U; 5) Pseudo-
segmentation labels are created for images in L using the
‘Segment Anything’ [21]; 6) A U-Net model is trained using
the Mean Teacher method on both subsets L and U, and tested
on X. A detailed illustration of our approach is shown in Fig.
2. Table I indicates the number of images in each set. More
details about the dataset are given in Subsection III-A.

TABLE I

THE NUMBER OF IMAGES IN DIFFERENT SUBSETS
Dataset | Benign | Malignant | Normal | Total
Entire 437 210 133 780
N 357 161 106 624
K 80 49 27 156
14 357 161 0 518
X 80 49 0 129

L 112 52 0 164

U 245 109 0 354

A. Classification Model Training and CAMs Generation

Our class activation maps are generated using the AMR
model [16], consisting of two branches: the spotlight and
compensation branches. The spotlight branch is based on
the original ResNet50 architecture and focuses on the most
discriminative regions of the target object. Meanwhile, the
compensation branch employs ResNet50 but incorporates At-
tention Modulation Modules (AMMs) to recalibrate the spot-
lighted CAMs, refining the CAMs. This dual-branch approach
extends the CAMSs’ coverage to include the entire tumor. The
AMR has two classification losses and an additional loss
related to the CAMs from both branches. For training the
AMR module, we utilize all images I € RW># and their
respective classification labels (tumor/normal), where W and
H are the width and height of the images. The AMR module

is then used to generate CAMs CAM € R"W > in the tumor
class for all the images.

B. Selection of Candidates for Generating Pseudo Labels

Our selection method is based on the regions of interest
(ROIs) derived from the C'AM in Subsection II-A. The C AM
is first normalized to O to 255. Then, the normalized C AM
and a percentage a% are input to Algorithm 1 to select an
intensity 7. The pixels in the normalized C'AM between
[T, 250] are selected and their coordinates are defined as
S = (x1,y1), (x2,¥2), ..., (xp,yp). The coordinates in set S
are used to form the ROIs. The coordinates for the upper left
corner of the ROI are (Zicftmost, Ytopmost), determined by
finding the minimum values of = and y in S. Similarly, the co-
ordinates for the lower right corner, (Z,;ghtmost, Ybottommost )s
are the maximum values of = and y in the set S.

Algorithm 1 Pseudo Label Generation Candidate Selection

Input: Normalized CAM € RW>H in the tumor class, percentage
a%.
1: Calculate histogram H (i) for ¢ = 0 to 255.
2: Calculate cumulative sum C/(i): C(i) = 3 325 H (j), for i = 255
to 0.
3: Calculate total number of pixels Piotq: in CAM.
4: Find the minimum intensity 7 argminr(C(T) <= a% X
Ptotal)-
Output: Intensity 7.

For each image in V, we choose two different percentage
values, a1 % and a2 %, where ax% is marginally smaller than
a1%. They are used to extract two different ROIs on images,
as shown in the second row of Fig. 1 (red boxes and blue
boxes). We then compute the Intersection over Union (IoU)
for the two ROIs. If the IoU is greater than 0.7, we identify
the image as a promising candidate and add this image to a
subset L. This approach is based on the idea that a high ToU
indicates the CAMs are stable enough to produce two similar
ROIs, consequently implying the corresponding images are
high quality and have less noise, making them more suitable
for generating pseudo labels. In our approach, we have chosen
a1% and as% values of 2.5% and 1%, respectively. Selected
images are then used to generate pseudo labels.



C. Pseudo Label Generation and Model Training

After identifying the promising candidates in subset L and
their broader ROIs defined by ;% as detailed in Subsection
II-B, we utilize the ‘Segment Anything’ model [21] to create
pseudo-segmentation labels (as illustrated in the fourth row
of Fig. 1). The original images and their ROIs are input into
the ‘Segment Anything” method, facilitating the generation of
pseudo-segmentation labels.

After generating pseudo-segmentation labels for images
in L, we adopt the Mean Teacher method [22] to train a
segmentation model on the labeled subset L and unlabeled
set U. Specifically, the Mean Teacher strategy has student and
teacher networks that are two of the same U-Nets. Images
in L and U are passed to the student and teacher networks.
The outputs from the student network of images in L are
used to compute Lop and Lpe for the segmentation task.
Meanwhile, a consistency loss Ly;sp is computed on the
outputs of student and teacher networks using both images
in L and U. The weights of the student model are updated
with gradient descent. The weights of the teacher network are
updated as the Exponential Moving Average (EMA) weights
of the student network through the training procedure. The
loss function of the mean teacher method is as follows:

1
Liotal = §(£CE + Lpc)+ BLusE (D

where Lop and Lpe are the cross-entropy loss and Dice’s
loss; L5k is mean square error loss; 3 represents the weight
of consistency loss that is calculated following [22].

III. EXPERIMENT
A. Dataset and Implementation

A public dataset [23] is employed in this research, com-
prising 780 BUS images, including 210 images of malignant
tumors, 437 of benign tumors, and 133 normal images. We
partition each category—malignant, benign, and normal—into
two subsets: 80% for training and 20% for testing. The
number of images utilized in various phases and the number
of images selected by our proposed image selection algorithm
are detailed in Section II and Table I. In the AMR training
phase, we categorize both the malignant and benign images
as Category 1 and the normal images as Category 0 for
a binary classification task (tumor/normal). When training
the segmentation model, we only use images with tumors
(malignant or benign) to generate pseudo labels because there
is no need to segment tumors for non-tumor images. The
segmentation model is built upon a U-Net architecture with a
ResNet50 as the backbone and trained using the Mean Teacher
method. During the Mean Teacher method training, we form
a subset L to produce pseudo-segmentation labels from the
training benign and malignant BUS images. The model is
evaluated on the test benign and malignant images to ensure
a fair comparison. For training the AMR and segmentation
model, we set 60 epochs, with a batch size set at 32. We
employ the Adam optimizer, configured with a learning rate
of 0.001 and the By and By of 0.9 and 0.999, to facilitate

steady convergence of the model. We employ the IoU metric
to assess performance, comparing the segmentation outcomes
with the real ground truths.

To augment our training data and enhance model robustness,
we incorporate various transformations. These include random
horizontal and vertical flips, as well as random rotations.

TABLE II
ABLATION STUDY RESULTS

Methods Tumor IoU  Background IoU  mloU
GT-Whole 67.9% 94.8% 81.3%
GT-Subset 56.3% 93.9% 75.1%
GT-MeanTeacher 64.0% 94.1% 79.0%
Pseudo-Whole 48.5% 91.7% 70.1%
Pseudo-Subset 35.2% 91.1% 63.1%
Pseudo-MeanTeacher 56.3% 91.3% 73.8%

B. Ablation Study

In this section, we conduct an ablation study to validate
the effectiveness of pseudo labels for training segmentation
models. Additionally, we aim to substantiate our hypothesis
that generating pseudo-segmentation labels from high-quality
candidates and employing the Mean Teacher semi-supervised
method for training the segmentation model yields superior
results compared to using the entire dataset with a pseudo-
segmentation model. This study focuses solely on benign and
malignant BUS images. We select a subset L of training
images based on our selection algorithm described in Sub-
section II-B from the entire benign and malignant training
set V. The images not included in L are categorized under
U. Our study involves six experiments: 1) training a U-Net
with the complete training set 1/, using all images with their
real ground truths (GT-Whole), 2) training a U-Net with the
subset L, using images in L with their real ground truths (GT-
Subset), 3) training a U-Net using the Mean Teacher method
with both L and U, but only L has the real ground truths
(GT-MeanTeacher), 4) training a U-Net with the complete
training set V/, using all images with their pseudo ground truths
(Pseudo-Whole), 5) training a U-Net with the subset L, using
images in L with their pseudo ground truths (Pseudo-Subset),
6) training a U-Net using the Mean Teacher method with both
L and U, but only L has the pseudo ground truths (Pseudo-
MeanTeacher). All six models are tested on test set X.

The analysis of the ablation study, as shown in Table II,
indicates that the fully supervised learning approach using the
entire training set achieves the best results on real ground
truths. Comparing the first and second rows as well as the
fourth and fifth rows of the table, it is evident that training the
U-Net with subset L, whether using pseudo or real ground
truths, leads to a decline in performance. However, imple-
menting the Mean Teacher method, which incorporates un-
labeled data, significantly enhances performance, particularly
when using pseudo-ground truths. The Pseudo-MeanTeacher
approach shows a notable improvement of 7.8% in tumor
IoU, reaching 56.3%, and a 3.7% increase in mean IoU.
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Fig. 3. Semantic segmentation results: (a) Original BUS images, (b) Real segmentation ground truths, (c) Pseudo-Subset; (d) Pseudo-Whole, (e) Pseudo-

MeanTeacher.

This improvement is attributed to pseudo-labels generated
from unselected images being less accurate, and using these
for training can be detrimental. Thus, it is more beneficial
to employ these images in a semi-supervised manner. The
visualized segmentation results in Fig. 3 corroborate these
findings. They demonstrate that utilizing the selected subset L
to generate pseudo-labels and training the segmentation model
using the Mean Teacher method leads to improved outcomes,
as seen in Fig. 3(e), compared to using only subset L (Fig.
3(c)) or the entire dataset (Fig. 3(d)).

C. Comparison with State-of-the-art Methods

In our research, we performed a comparative analysis
(as shown in Table III) against various alternative methods
that use different classification models to generate CAMs,
including employing VGG16 and ResNet50 networks to train
tumor/normal classification models and generate CAMs, as
cited in [14]. Additionally, we examined the use of the OAA
method [15] to refine CAMs generated from ResNet50. These
methods employ Dense Conditional Random Fields (CRF)
[24] to generate pseudo-segmentation labels from CAMs.
Dense CRF is a widely utilized technique for enhancing
segmentation output, considering individual pixel features
and spatial interactions among pixels. Subsequently, a U-Net
model is explicitly trained to segment BUS images using
the pseudo-labels. Our study also includes comparisons with
a weakly supervised medical image segmentation method,
Swin MIL [12], and two state-of-the-art natural image weakly
supervised methods, AMR [16] and ReCAM [25].

The results in Table III demonstrate that our method
achieves the highest tumor IoU and mean IoU, with increases
of 19.1% and 9.5%, respectively, compared to the second-
best performing method. Additionally, our method attains
the second-highest background IoU, reaching 91.3% IoU. A
significant drawback of previous methods is their reliance on
using the entire dataset to generate pseudo-labels. However,
not all images produce high-quality pseudo-labels, which
diminishes the overall performance of the models. In contrast,

our method focuses on selectively identifying promising can-
didates for pseudo-label generation and effectively harnesses
unlabeled data to enhance model performance. This approach
effectively addresses the specific challenges of BUS image
segmentation and efficiently uses the available data, resulting
in improved performance and more dependable outcomes.

TABLE III
QUANTITATIVE COMPARISONS TO OTHER METHODS

Methods Tumor IoU  Background IoU  mloU
VGG16-CAM [14] 24.1% 89.1% 56.6%
ResNet50-CAM [14] 37.2% 91.4% 64.3%
OAA-CAM [15] 30.4% 85.3% 57.8%
Swin MIL [12] 25.4% 89.3% 57.6%
ReCAM [25] 31.7% 88.1% 59.9%
AMR [16] 35.8% 87.5% 61.7%
Pseudo-MeanTeacher (Ours) 56.3% 91.3% 73.8%

IV. CONCLUSION

Due to the high cost and resource requirements for medical
image annotation, it is essential to design weakly supervised
segmentation methods that perform similarly to fully super-
vised methods. In this study, we propose a novel weakly su-
pervised BUS image segmentation framework that employs an
efficient selection method to find high-quality candidates for
generating pseudo-segmentation labels. The proposed method
utilizes the Mean Teacher method to train the segmentation
model on both pseudo-labeled and unlabeled images. The
primary benefit of the proposed method is decreasing the
costs and labor associated with comprehensive annotation
while upholding high-performance standards. This benefit is
particularly crucial in medical imaging, where the precision
and dependability of models are critical. The proposed method
is evaluated on a public BUS image dataset. Extensive exper-
iments demonstrate its effectiveness. It outperforms six recent
weakly supervised segmentation methods and achieves state-
of-the-art performance.
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